VI. [Bis-2-(5-methyl-1,3-benzdithiylium)]-trimethincyanin-perchlorat. – a) Analog V aus 320 mg Toluoldithiol und 130 mg Glutaconsäure. Umkristallisieren durch Lösen in 15 ml Nitromethan in der Wärme und zugeben von 45 ml Eisessig. Metallgrünglänzende Nädelchen. Von ca. 265° ab Zers. Lösung in Eisessig grünstichig blau, λ_{max} 666 m μ .

b) 280 mg II und 0,2 ml Orthoameisenester werden in 10 ml Eisessig 2 Min. zum Sieden erhitzt. Das Rohprodukt wird erst mit Eisessig, dann mit Äther ausgewaschen und wie unter a) umkristallisiert.

 $C_{19}H_{15}O_4ClS_4$ (471,0) Ber. C 48,45 H 3,21 S 27,23% Gef. C 48,37 H 3,33 S 27,16%

Zusammenfassung

Ausgehend von Toluoldithiol werden einige einfache 1,3-Benzdithiyliumsalze (1,3-Dithiahydrindeniumsalze) sowie das Bis-5-methyl-1,3-benzdithiylium-monound -trimethincyanin synthetisiert.

Institut für Farbenchemie der Universität Basel

189. Zur Bestimmung der HAMMETT'schen Aciditäts-Funktion: Das System Methylisobutylketon/Schwefelsäure

von A. Mörikofer, W. Simon und E. Heilbronner

(10. VI. 59)

Einleitung

Methylisobutylketon wird als Lösungsmittel beschrieben, das für die Ausführung von potentiometrischen Säure-Basen-Titrationen in einem grossen Aciditätsbereiche¹) günstige Eigenschaften aufweist. Deshalb sollte versucht werden, es für die Bestimmung von scheinbaren Dissoziationskonstauten einer Reihe kürzlich beschriebener Arylazoazulene²) heranzuziehen³). Zu diesem Zwecke wurde zunächst die HAMMETT'sche H₀-Säurefunktion⁴)⁵) für das System Methylisobutylketon (0,5 Gew.-Proz. Wasser)/Schwefelsäure ermittelt. Dabei soll vorderhand nicht auf die Frage eingegangen werden, inwieweit der Vergleich einer solchen in einem relativ aprotischen System bestimmten H₀-Skala mit anderen in wässerigen (bzw. amphiprotischen) Medien ermittelten Skalen sinnvoll ist⁶)⁷).

In der vorliegenden Arbeit wurde an Hand dieses speziellen Beispieles ein Regressionsverfahren erprobt, das es ermöglicht, in einem Gange eine für den ganzen

¹) D. B. BRUSS & G. E. A. WYLD, Anal. Chemistry 29, 232 (1957).

²) F. GERSON & E. HEILBRONNER, Helv. 41, 1444 (1958).

³) A. MÖRIKOFER & E. HEILBRONNER, Helv. 42, im Druck.

⁴) a) L. P. HAMMETT & J. A. DEYRUP, J. Amer. chem. Soc. 54, 2721 (1932); b) L. P. HAMMETT & J. A. DEYRUP, *ibid.* 55, 1900 (1933); c) L. P. HAMMETT & J. A. DEYRUP, *ibid.* 54, 4239 (1932); d) L. P. HAMMETT, A. DINGWALL & L. A. FLEXSER, *ibid.* 56, 2010 (1934); e) L. P. HAMMETT & R. P. CHAPMAN, *ibid.* 56, 1282 (1934); f) L. P. HAMMETT, Physical Organic Chemistry, Kap. IX, p. 251, New York (1940).

⁵) M. A. PAUL & F. A. LONG, Chem. Reviews 57, 1 (1957), a) p. 9, b) p. 15.

⁶) R. G. BATES & G. SCHWARZENBACH, Helv. 38, 699 (1955).

⁷) a) E. GRUNWALD & B. J. BERKOWITZ, J. Amer. chem. Soc. **73**, 4939 (1951); b) B. GUT-BEZAHL & E. GRUNWALD, *ibid.* **75**, 559, 565 (1953).

Aciditätsbereich gültige H_0 -Funktion aufzustellen. Dieses Verfahren berücksichtigt gleichzeitig alle Messwerte aller verwendeten Indikatoren und weist somit gegenüber dem bisher üblichen schrittweisen Vorgehen, bei dem pK'- und H_0 -Werte für die verschiedenen Indikatoren beginnend mit dem basischsten nacheinander berechnet werden, wesentliche Vorteile auf.

Experimentelle Resultate

Die Bestimmung einer H₀-Skala stützt sich auf die Beziehung (1)

$$\mathbf{H}_{\mathbf{0}} = \mathbf{p}\mathbf{K}_{\mathbf{B}\mathbf{H}}^{\prime} \oplus + \log\left(\mathbf{c}_{\mathbf{B}}/\mathbf{c}_{\mathbf{B}\mathbf{H}}^{\prime} \oplus\right), \tag{1}$$

in der c_B/c_{BH}^{\oplus} das spektroskopisch direkt messbare Verhältnis (2) der Konzentrationen der neutralen Indikatorbase B und der korrespondierenden Säure BH^{\oplus} darstellt.

$$c_{\rm B}/c_{\rm BH} \Theta = (D - D_{\rm s})/(D_{\rm 0} - D)$$
⁽²⁾

- $D_0 = Optische Dichte einer neutralen Indikatorlösung, in der nur die Form B vorliegt (bei der Wellenlänge <math>\lambda$).
- $D_8 = Optische Dichte einer stark sauren Indikatorlösung, in der praktisch nur die korrespon$ $dierende Säure BH^{<math>\oplus$} vorliegt (bei der Wellenlänge λ).
- D = Optische Dichte bei einer intermediären Säurekonzentration der Indikatorlösung, in der B und BH^{\oplus} in messbarer Konzentration nebeneinander vorliegen (Wellenlänge λ).

In der Tab. 1 sind jene fünf Indikatorbasen angegeben, mit denen in der vorliegenden Arbeit die H₀-Skala für den Bereich der Konzentration c_A an Schwefelsäure in Methylisobutylketon von $c_A = 5 \cdot 10^{-4}$ -m. bis $c_A = 1$ -m. gemessen wurde.

Indikator	pK ['] _{BH} ⊕ in Wasser, «best values» ^{5a})
o-Nitranilin ⁸) ⁹)	- 0,29
Phenylazodiphenylamin ⁸)	1,42
m-Nitroanilin ¹¹)	2,50
p-Aminoazobenzol ⁸)	2,76

Tabelle 1. Indikatoren

Bei der spektroskopischen Messung des Verhältnisses (2) ist die starke Abhängigkeit der optischen Dichte der Indikatorlösungen vom Wassergehalt des Methylisobutylketon/Schwefelsäure-Systems zu berücksichtigen. Wie die Fig. 1 zeigt, ist diese Abhängigkeit bei kleinem absolutem Wassergehalt besonders gross (vor allem für die Indikatorsäure BH^{\oplus}), so dass bereits Spuren von Luftfeuchtigkeit genügen, um beträchtliche Fehler in den optischen Dichten hervorzurufen. Der Wassergehalt der Lösung ist deshalb bei solchen Messungen ein Parameter, der genau bekannt sein und auf einen bestimmten Wert eingestellt werden muss. Weil in Methylisobutylketon nur maximal 1,9 Proz. Wasser gelöst werden können¹²), muss der Wassergehalt kleiner

8) L. P. HAMMETT & M. A. PAUL, J. Amer. chem. Soc. 56, 827 (1934).

9) W. SIMON, G. NAVILLE, H. SULZER & E. HEILBRONNER, Helv. 39, 1107 (1956).

¹¹) E. A. BRAUDE & E. S. STERN, J. chem. Soc. **1948**, 1976; R. G. BATES & G. SCHWAR-ZENBACH, Helv. **37**, 1069 (1954).

¹²) P. M. GINNINGS, D. PLOUK & E. CARTER, J. Amer. chem. Soc. 62, 1923 (1940).

¹⁰) E. HEILBRONNER & S. WEBER, Helv. **32**, 1513 (1949); M. A. PAUL, J. Amer. chem. Soc. **76**, 3236 (1954).

Indikator	Säurekon- zentration –log c _A = x _i	$\log \frac{c_{B}}{c_{BH} \oplus}$ $= y_{i}$	λ_{\max}
o-Nitranilin (r = 1)	0,205 0,284 0,381 0,440 0,506 0,585 0,683 0,803 0,979	$\begin{array}{c} -1,063\\ -0,732\\ -0,416\\ -0,218\\ -0,012\\ +0,198\\ 0,502\\ 0,873\\ 1,332\end{array}$	405 405 405 404 404 404 403 403 403
p-Nitranilin (r = 2)	0,682 0,779 1,205 1,333 1,441	1,255 1,100 0,028 0,294 0,574	371 371 370 368 367
Phenylazo- diphenylamin (r = 3)	0,980 1,080 1,284 1,382 1,438 1,500 1,583 1,806	- 1,046 - 0,744 - 0,301 - 0,095 0,043 0,176 0,354 0,768	415 414 414 413 413 412 412 412
m-Nitranilin (r = 4)	1,380 1,588 1,745 1,820 1,890 1,920 1,987 2,112 2,288 2,588	$\begin{array}{c} -1,137\\ -0,699\\ -0,411\\ -0,294\\ -0,176\\ -0,108\\ 0,016\\ 0,229\\ 0,486\\ 0,927\end{array}$	376 376 377 378 378 379 380 380 380 380 380
p-Amino- azobenzol (r = 5)	1,682 1,983 2,284 2,439 2,585 2,682 2,983 3,284	$\begin{array}{r} -1,350\\ -0,840\\ -0,383\\ -0,141\\ 0,054\\ 0,160\\ 0,510\\ 0,824\end{array}$	395 395 395 394 392 390 390 390

Tabelle 2. Durchschnitte aus zwei Messwerten von log $\frac{c_B}{c_{BH}\oplus}$ der fünf Indikatoren

als etwa 1 Proz. gehalten werden, da ja durch die zuzufügende Schwefelsäure zusätzliche Mengen Wasser in das System gebracht werden. Für die vorliegende Arbeit wurden 0,5 Gew.-Proz. destilliertes Wasser zum mittels Molekelsieben¹³) gut getrockneten Methylisobutylketon zugefügt.

Fig. 1. Abhängigkeit der optischen Dichte der Indikatorlösungen vom Wassergehalt des Mediums Methylisobutylketon bzw. Methylisobutylketon/Schwefelsäure

Beispiel: m-Nitranilin

 $\bullet = freie Base$

 $\circ = korrespondierende Säure$

(Der eingezeichnete Pfeil bezeichnet die in der Folge gewählte Wasserkonzentration von 0,50 Gew.-Proz.)

Von jedem der fünf in Tab. 1 angegebenen Indikatoren wurden Absorptionsspektren in neutraler Lösung und in einer Reihe von Lösungen abgestuften Schwefelsäuregehaltes aufgenommen, aus denen dann die Werte log $(c_B/c_{BH} \oplus)$ berechnet wurden. Aus je zwei voneinander unabhängigen Messungen bei der gleichen Säurekonzentration (Standardabweichung = 0,02 log (c_B/c_{BH}^{\oplus}) -Einheiten) wurden für die weitere Auswertung die Durchschnitte ermittelt. Diese Durchschnittswerte finden sich zusammen mit dem negativen Logarithmus der molaren Schwefelsäuregen ausgeführt worden sind, in der Tab. 2 voreinigt. Die für jeden Indikator nach der Methode der kleinsten Quadrate berechneten quadratischen Regressions-Gleichungen sind in der Tab. 3 angegeben. In dieser Tab. bedeutet DQ_{um} die beste Schätzung für die Streuung um die Regression und Φ den dazugehörigen Freiheitsgrad. Wie ersichtlich, ist nur für p-Nitroanilin der quadratische Anteil nicht gesichert (in Anbetracht der geringen Zahl der Freiheitsgrade).

Tabelle 3. Regressionsgleichungen der Indikatoren

Indikator	Regressionsgleichung	DQum	Φ
o-Nitranilin	$Y = -1,7972 + 3,8589 x - 0,6870 x^2$	0,000696	6
p-Nitranilin	Y = -2,5705 + 1,6283 x	0,001035	2
Phenylazo- diphenylamin	$Y = -3,9163 + 3,3661 x - 0,4267 x^2$	0,000310	5
m-Nitranilin	$Y = -4,5476 + 2,8911 x - 0,3001 x^2$	0,000452	7
p-Aminoazo- benzol	$Y = -5,1521 + 2,7207 x - 0,2749 x^2$	0,000188	5

¹³) R. M. BARRER, Quart. Reviews **3**, 293 (1949); Amer. Reports chem. Soc. **41**, 31 (1944); J. Chim. phys. **47**, 82 (1950); Disc. Farad. Soc. **7**, 135 (1949).

Auswertung der Resultate

Dem üblichen schrittweisen Verfahren zur Berechnung von H_0 -Funktionen haften verschiedene Mängel an, deren wesentlichste hier kurz angeführt seien:

1. Da sich die pK'-Werte derjenigen Indikatoren, mit denen die H_0 -Funktionen sukzessive zu immer negativeren Werten von H_0 extrapoliert wird, auf die pK'-Werte der bereits verwendeten basischeren Indikatoren stützen, gehen sämtliche Fehler dieser bereits vorliegenden pK'-Werte direkt in den nächsten zu bestimmenden Wert ein. Der Fehler, mit dem die so errechneten pK'-Werte behaftet sind, wächst demnach mit jedem einzelnen Schritt an, und dies bedingt, dass auch der Fehler im H_0 -Wert, der jeder Säurekonzentration c_A zugeordnet ist, mit steigendem c_A zunimmt.

2. Die Streuung der gemessenen Grössen log $(c_B/c_{BH}\oplus)$ um die im wesentlichen eine Gerade darstellende Regression auf log c_A ist deutlich heteroskedastisch, da sie vom Punktlog $(c_B/c_{BH}\oplus)$ = 0 aus mit wachsendem Absolutbetrag von log $(c_B/c_{BH}\oplus)$ stark zunimmt. Die Eichung eines der Indikatoren durch den ihm unmittelbar vorangehenden Indikator macht es nun notwendig, die beiden den betreffenden Indikatoren zugeordneten Regressionskurven in jenem Gebiet zur Überlappung zu bringen, in dem die Fehler besonders gross sind. Dies bringt mit sich, dass das Auflaufen des Fehlers in H₀ mit wachsendem c_A noch weiter verstärkt wird.

3. Schliesslich können Unterschiede in den Steigungen der Regressionsfunktionen für $\log (c_B/c_{BH} \oplus)$ auf $\log c_A$ zu Knicken in der H₀-Skala führen, die als Artefakte zu gelten haben, da sie durch die im speziellen getroffene Wahl der Indikatoren und der Überlappungsintervalle bedingt sind und eigentlich ausgemittelt werden sollten.

Die Auswirkung all dieser Fehlerquellen auf die gesuchte Funktion $H_0 = H_0$ (-log c_A) soll nun durch den Ansatz (3) ausgeglichen werden ($x = -\log c_A$).

$$H_0 = A - B \cdot \log c_A + C \cdot Z(-\log c_A),$$

= A + B \cdot x + C \cdot Z(x). (3)

In diesem bedeutet Z (x) eine noch zu bestimmende Funktion, die die Abweichung der H₀-Werte von jener Geraden A + Bx für kleine Werte von x berücksichtigt, in die die H₀-Skala aus theoretischen Gründen bei sehr kleinen Säurekonzentrationen c_A , d. h. für grosse Werte $x = -\log c_A$, übergehen muss.

Setzt man die Relation (1) in (3) ein, so sieht man, dass die Messgrösse log (c_B/c_{BH}) für jeden Indikator r, d. h. für jedes korrespondierende Säure-Basen-Paar B_r und BH_r^{\oplus} , wie folgt definiert ist:

$$\log (c_{\mathbf{B}_{\mathbf{r}}}/c_{\mathbf{B}\mathbf{H}_{\mathbf{r}}}^{\oplus}) = -\mathbf{p}\mathbf{K}_{\mathbf{B}\mathbf{H}_{\mathbf{r}}}^{'\oplus} + \mathbf{A} + \mathbf{B} \cdot \mathbf{x} + \mathbf{C} \cdot \mathbf{Z}(\mathbf{x}) ,$$

$$= \mathbf{h}_{\mathbf{r}}' + \mathbf{A} + \mathbf{B} \cdot \mathbf{x} + \mathbf{C} \cdot \mathbf{Z}(\mathbf{x}) ,$$
(4)

worin die Abkürzung h' für $-pK'_{BH_r}$ steht.

Demzufolge müssen sich alle in der Tab. 2 für die Werte $x = x_i$ der unabhängigen Variablen x enthaltenen Werte log $(c_{B_r}/c_{BH_r^{\oplus}})$ der Indikatoren r (r = 1, 2, 3, 4, 5) durch die Regressionsfunktion (5) ausgleichen lassen, wenn man willkürlich den pK' des am wenigsten basischen Indikators o-Nitroanilin (r = 1) gleich Null setzt und alle anderen pK'-Werte auf diesen bezieht.

$$\log \left(c_{\mathbf{B}_{\mathbf{r}}} / c_{\mathbf{B}\mathbf{H}_{\mathbf{r}}} \oplus \right) = \mathbf{y}_{\mathbf{i}} = \mathbf{A} + \mathbf{B} \cdot \mathbf{x}_{\mathbf{i}} + \mathbf{C} \cdot \mathbf{Z}(\mathbf{x}_{\mathbf{i}}) + \delta_{\mathbf{r}\mathbf{2}}\mathbf{h}_{\mathbf{2}} + \delta_{\mathbf{r}\mathbf{3}}\mathbf{h}_{\mathbf{3}} + \delta_{\mathbf{r}\mathbf{4}}\mathbf{h}_{\mathbf{4}} + \delta_{\mathbf{r}\mathbf{5}}\mathbf{h}_{\mathbf{5}} + \varepsilon_{\mathbf{i}}.$$
(5)

In (5) bedeuten die $h_r = h'_r - h'_1 = pK'_{BH_1}^{\oplus} - pK'_{BH_r}^{\oplus}$, und die KRONECKER'schen Deltas δ_{rs} (s = 2, 3, 4, 5) sind so definiert, dass sie nur dann von Null verschieden sind und den Wert 1 annehmen, wenn sich die auszugleichende Grösse $y_i = \log (c_{B_r}/c_{HB_r}^{\oplus})$ auf den Indikator s bezieht (s = r). ε_i ist der zu minimisierende Fehler: $\mathbf{S}\epsilon_i^2 = \text{Min.}$ Zur besseren Veranschaulichung der durch (5) definierten Ausgleichsrechnung ist das Verfahren in der Fig. 2 schematisch dargestellt worden.

Der Ansatz (5) und die nachfolgenden Ausführungen beziehen sich in dieser Arbeit ausschliesslich auf das vorliegende spezielle Beispiel, welches nur 5 Indikatoren umfasst, doch ist die Verallgemeinerung auf beliebig viele Indikatoren trivial.

Fig. 2. Aufbau der Regressions-Funktion (5)

Kurven 1, 2, 3, 4, 5: Messwerte der einzelnen Indikatoren r = 1 bis 5, bzw. deren Regression auf x. Gestrichelte Kurve: Ansatz $Y = A + Bx + Cm^x$ für die gesuchte HAMMETT-Funktion $Y = H_0$. h_2, h_3, h_4, h_5 : Vertikale Verschiebungen, die die Kurven r = 2,3,4,5 mit der gestrichelten Kurve zur Deckung bringen. Diese Grössen stellen die optimalen Schätzungen für die gesuchten pK'-Werte, bezogen auf den Indikator r = 1 dar.

(Die Differenzen der gestrichelten Kurve zu ihrer Asymptote bei hohen Werten von x stellen die R(x)-Werte dar, die bei der Bestimmung von Z(x) Verwendung finden)

Der Hauptvorteil des Regressions-Ansatzes (5) ist, dass er die Berechnung der statistisch wahrscheinlichsten Ausgleichswerte Y_i für sämtliche gemessenen y_i in einem Arbeitsgang erlaubt, gleichzeitig die optimalen Schätzungen für die Grössen h_r und damit für die $pK'_{BH_r}^{\odot}$ liefert und schliesslich die Fehlerschätzung wesentlich erleichtert. Zudem werden alle jene Fchlerquellen, die dem schrittweisen Verfahren anhaften, vermieden.

Nach den klassischen Regeln der mehrfachen Regressions-Rechnung^{14a})^{15a}) führt der Ansatz (5) zu einem Gleichungs-System (6) von 6 linearen Gleichungen mit den 6 Unbekannten B, C, h_2 , h_3 , h_4 und h_5 .

$$\begin{pmatrix} \mathbf{S}_{11}, \dots, \mathbf{S}_{16} \\ \vdots & \vdots \\ \vdots & \vdots \\ \mathbf{S}_{61}, \dots, \mathbf{S}_{66} \end{pmatrix} \begin{pmatrix} \mathbf{B} \\ \mathbf{C} \\ \mathbf{h}_{2} \\ \mathbf{h}_{3} \\ \mathbf{h}_{4} \\ \mathbf{h}_{5} \end{pmatrix} = \begin{pmatrix} \mathbf{S}_{1y} \\ \vdots \\ \vdots \\ \vdots \\ \mathbf{S}_{6y} \end{pmatrix}$$
(6)

¹⁴) O. L. DAVIES, Statistical Methods in Research and Production, London 1957, a) p. 230, b) p. 161, c) p. 218.

¹⁵) A. LINDER, Statistische Methoden, Basel 1957, a) p. 48, b) p. 112, c) p. 189.

Wir führen nun die folgenden Definitionen und Bezeichnungen ein: Die Zahl der für den Indikator r gemessenen Werte y_i sei n_r und die Gesamtzahl aller gemessenen Werte $N = n_1 + ... + n_5$. Der Wert der Funktion Z(x) an der Stelle $x = x_1$ sei $Z(x_1) = z_1$. \overline{x} , \overline{y} und \overline{z} bedeuten die Gesamtdurchschnitte aller N, x_1 -, y_1 - bzw. z_1 -Werte, während $S^{(r)}x_1$, $S^{(r)}y_1$ und $S^{(r)}z_1$ die Summe all jener x_1 , y_1 bzw. z_1 darstellen, die zum Indikator r gehören. Schliesslich gelten die in der Statistik üblichen Abkürzungen (7).

$$S_{xx} = S(x_i - \overline{x})^2 \quad S_{zz} = S (z_i - \overline{z})^2$$

$$S_{xz} = S(x_i - \overline{x})(z_i - \overline{z})$$

$$S_{xy} = S(x_i - \overline{x})(y_i - \overline{y})$$

$$S_{zy} = S(z_i - \overline{z})(y_i - \overline{y})$$
(7)

Unter diesen Voraussetzungen erhält man für die Elemente der symmetrischen Matrix (S_{ij}) und des Kolonnenvektors (S_{iy}) des Gleichungssystems (6) die folgenden Werte:

(S ₁₁ S ₁₆)	}
Į	
1	1
· ·	
· ·	
· ·	1 =
	i i
· ·	
· ·	1
	1
Sauce Sauce Sauce	ļ.
(~01·····	

Setzt man (8) und (9) in (6) ein, so lassen sich die Unbekannten B, C, h_2 , h_3 , h_4 und h_5 berechnen. Diese definieren dann die noch ausstehende Grösse A entsprechend (10).

$$\mathbf{A} = \overline{\mathbf{y}} - \mathbf{B} \cdot \overline{\mathbf{x}} - \mathbf{C} \cdot \overline{\mathbf{z}} - \mathbf{h}_2 \mathbf{n}_2 / \mathbf{N} - \mathbf{h}_3 \mathbf{n}_3 / \mathbf{N} - \mathbf{h}_4 \mathbf{n}_4 / \mathbf{N} - \mathbf{h}_5 \mathbf{n}_5 / \mathbf{N}. \tag{10}$$

Vor Beginn der numerischen Berechnung der Parameter des Ansatzes (5) ist zunächst die Funktion Z(x) empirisch zu ermitteln, was z. B. wie folgt geschehen kann. Wie bereits erwähnt, geht $H_0 = H_0(x)$ (siehe Gleichung (3)) für grosse x in eine Gerade über. Aus einer provisorischen graphischen Darstellung dieser Funktion,

(8)

die man sich leicht aus den Werten der Tab. 2 beschaffen kann, ergibt sich, dass dies in unserem Beispiel ungefähr für $x = -\log c_A > 3$ der Fall sein dürfte. Andererseits muss die Funktion $H_0 = H_0(x)$ für x = -1,3, d. h. für reine Schwefelsäure ($c_A = 18$ m), den bekannten H_0 -Wert -11,1 erreichen. Extrapoliert man nun diejenige Gerade, in welche die provisorische Darstellung der Funktion $H_0(x)$ für x > 3übergeht, rückwärts bis x = -1,3, so lassen sich leicht für eine Reihe von x Werten, die kleiner als 3 sind, die auf die Funktion C Z(x) entfallenden Anteile ($R(x) \cong C \cdot Z$ (x)) grob abschätzen. Diese Anteile R(x) sind in der letzten Kolonne der Tab. 4, welche die Werte für unser Beispiel zusammenfasst, angegeben und in Fig. 3 graphisch dargestellt. Es zeigt sich nun, dass log -R(x) linear von x abhängt (Fig. 4), so dass sich, entsprechend dem Ansatz (11), die Regressionsgerade der log -R(x)auf x berechnen lässt.

$$\log - \mathbf{R} (\mathbf{x}) = \log \mathbf{C} + (\log \mathbf{m}) \cdot \mathbf{x}. \tag{11}$$

Das Resultat dieser Rechnung ist $\log - R(x) = 0.354 - 0.518 x$, so dass man für die gesuchte Funktion Z(x) schliesslich die folgende Form erhält:

$$Z(\mathbf{x}) = \mathbf{m}^{\mathbf{x}} = (0,303)^{\mathbf{x}}.$$
 (12)

Der aus (11) berechenbare Wert für C stellt eine erste Näherung für diesen aus (6) mit grösserer Genauigkeit erhaltbaren Parameter dar.

$ \begin{array}{c} -\log c_{A} \\ = x \end{array} $	H ₀ aus graphischer Darstellung	H ₀ -Werte der extrapol. Gerade	Differenz R(x)
- 1,3	- 11,10	- 1,4	9,6
-1,0	- 8,0	- 1,0	- 7,0
0,0	- 2,1	+ 0,4	- 2,5
1,0	1,1	1,8	0,7
2,0	3,0	3,2	- 0,2
3,0	4,6	4,6) defini-
4,0	6,0	6,0	tions-
5,0	7,4	7,4] gemäss = 0

Tabelle 4. Anteile R(x)

Das Resultat der durch (6) gegebenen Ausgleichsrechnung ist unter Verwendung des Ansatzes (12) für die Funktion Z(x) und angewandt auf die experimentellen Werte der Tab. 2 das folgende:

$$Y_{r} = 1,1201 + 1,2322 \text{ x} - 3,1853 (0,303)^{\text{x}} - 1,8354 \delta_{rg} -2,2884 \delta_{rg} - 3,2761 \delta_{rg} - 4,1423 \delta_{r5}$$
(13)

Die Koeffizienten der $\delta_{r_{\theta}}$ sind die ursprünglich als h_r bezeichneten Differenzen $pK'_{BH_{1}} = pK'_{BH_{r}} \oplus der einzelnen Indikatoren r (vgl. Tab. 6, Kolonne 2).$

Die ersten drei Terme der rechten Seite von (13) sind die gesuchte Näherung (3) für die HAMMETT'sche Säurefunktion H_0 des Systems Methylisobutylketon (0,5 Proz. Wasser)/Schwefelsäure:

$$H_0(-\log c_A) = 1.12 - 1.232 \log c_A - 3.185 \cdot 0.303^{-\log c_A}$$
(14)

Eine Reihe von H_0 -Werten wurde für logarithmisch äquidistante Säurekonzentrationen – log c_A aus (14) berechnet und in der Tab. 5 angegeben. Die Fig. 4 enthält eine Darstellung der Grössen $\log(c_{B_r}/c_{BH_r^{\oplus}}) - h_r$ in Funktion von x. Abgesehen von der versuchsbedingten Streuung dieser Grössen um die für die gleichen x aus (14) berechenbaren Werte von H₀(-log c_A) gibt Fig. 4 ein Bild der Güte der erzielten Ausgleichung der in Tab. 2 gegebenen experimentellen Daten durch das hier gewählte Verfahren.

Fig. 3. Zur Bestimmung der Funktion Z(x)

Fig. 4. HAMMETT-Funktion des Systems Methylisobutylketon/Schwefelsäure, bezogen auf pK'(o-Nitranilin) = 0

- 😑 o-Nitranilin
- $\bullet = p$ -Nitranilin
- $\bullet = Phenylazodiphenylamin$
- $\mathbf{o} = \mathbf{m}$ -Nitranilin
- = p-Aminoazobenzol

Die für (13) und entsprechend für (14) gültige Streuungszerlegung^{14b})^{15b}) ergibt eine Streuung s² = 0,00286 der gemessenen y₁-Werte um die Regressionskurve (13). Die Standardabweichung beträgt s = 0,053 pK'-Einheiten, so dass innerhalb der Grenzen $\pm t_{0,05} \cdot s = \pm 2,04 \cdot 0,053 = \pm 0,109$ bezogen auf die durch (13) beschriebene Funktion im Durchschnitt 19 von 20 Messungen liegen ($t_{0,05}$ = STUDENT's t für 33 Freiheitsgrade).

Die Streuungen mit der die Schätzungen der Parameter B und C des Ansatzes (3) sowie die Verschiebungen h_r der einzelnen Indikatoren, d. h. deren relative pK'-Werte behaftet sind, werden so berechnet, dass man zunächst die zur Matrix (S_{11}) (definiert durch (8)) inverse Matrix $(S_{11})^{-1} = (C^{11})$ bestimmt^{14c})^{15c}). Für unser spezielles Beispiel erhält man:

			(S _{ij}) =			
Γ	23,340 14	- 5,536 36	- 2,134 88	- 1,066 80	- 4,168 25	7,802 20	-
	- 5,536 36	1,596 02	0,267 39	0,296 87	-1,308 82	- 1,421 48	
	- 2,134 88	0,267 39	4,375 00	1,000 00	- 1,250 00	-1,00000	(15)
Ĺ	- 1,066 80	- 0,296 87	1,000 00	6,400 00	- 2,000 00	1,600 00	(13)
	4,168 25	- 1,308 82	1,250 00	- 2,000 00	7,500 00	- 2,000 00	
L	7,802 20	-1,421 48	- 1,000 00	- 1,600 00	- 2,000 00	6,400 00	
			$(S_{ij})^{-1} =$	= (Cij) ==			
Γ	0,489 52	1,369 74	0,078 84	0,059 19	- 0,081 69	- 0,290 95	
	1,369 74	7,15975	1,062 89	1,309 28	1,227 08	0,797 25	
	0,078 84	1,062 89	0,537 05	0,410 18	0,466 48	0,472 20	(16)
	0,059 19	1,309 28	0,410 18	0,636 41	0,601 62	0,629 85	(10)
	- 0,081 69	1,227 08	0,466 48	0,601 62	0,861 63	0,864 69	
1_	- 0,290 95	0,797 25	0,472 20	0,629 85	0,864 69	1,189 48	_

Die Matrix (C^{ij}) enthält als Diagonalelemente die Multiplikatoren C^{ij}, die die Streuung der Grössen B, C, h₂, h₃, h₄ und h₅ bezüglich s² bestimmen. Es gilt, wobei V(B)...V(h₅) die Streuungen (Varianzen) und S.A. die Standardabweichungen der interessierenden Parameter bedeuten^{14c})^{15b}:

$V(B) = C^{11}s^2 = 0,00140$; S.A. (B) $= 0,037$	
$V(C) = C^{22}s^2 = 0,02048$; S.A. (C) = $0,143$	
$V(h_2) = C^{33}s^2 = 0,00154$	$S.A.(h_2) = 0.039$	(1.0)
$V(h_3) = C^{44}s^2 = 0,00182$; S.A. $(h_3) = 0,043$	(18)
$V(h_4) = C^{55}s^2 = 0,00246$; S.A. $(h_4) = 0,050$	
$V(h_5) = C^{66}s^2 = 0,00340$; S.A. $(h_5) = 0,058$	

Die Matrixelemente C¹ (i \pm j) bestimmen entsprechend dem Ausdruck cov (b₁b₁) = s² · C¹ die Kovarianzen der zu den Kolonnen i und j der Matrix (S₁) zugeordneten Unbekannten b₁ und b₁ des Gleichungssystems (6); (b₁; b₁ \equiv B, C,...h₅).

In Tab. 6 sind pK'-Werte verschiedener Herkunft zusammengestellt. Kolonne 1 umfasst zum Vergleich nochmals (s. Tab. 1) die von PAUL & Long für wässerige Medien^{5a}) ermittelten «besten Werte» der fünf Indikatoren. In der Kolonne 2 stehen die aus der Gleichung (13) als vertikale Verschiebungsstrecken h_r ermittelten pK'-Differenzen, während in Kolonne 3 jene pK'-Werte bezogen auf den pK' von o-Nitranilin zusammengestellt sind, die sich nach dem schrittweisen Berechnungsverfahren unter Zugrundelegung der fünf einzelnen Regressionskurven der Tab. 3 ergeben. Die Werte in Kolonne 4 sind Differenzen zwischen den pK'-Werten in den Kolonnen 2 und 3. Sie betragen zwischen 0,03 und 0,11 pK'-Einheiten und sind naturgemäss um so grösser, je weiter die pK'-Werte vom Bezugspunkt o-Nitranilin entfernt sind.

$-\log c_A$	H ₀						
0,0	-2,07	1,0	1,39	2,0	3,29	3,0	4,73
0,1	-1,58	1,1	1,62	2,1	3,45	3,1	4,86
0,2	-1,14	1,2	1,84	2,2	3,60	3,2	4,99
0,3	0,74	1,3	2,05	2,3	3,75	3,3	5,12
0,4	-0,36	1,4	2,25	2,4	3,90	3,4	5,25
0,5	-0,02	1,5	2,44	2,5	4,04	3,5	5,38
0,6	0,30	1,6	2,62	2,6	4,18	3,6	5,51
0,7	0,60	1,7	2,80	2,7	4,32	3,7	5,64
0,8	0,88	1,8	2,97	2,8	4,46	3,8	5,77
0,9	1,14	1,9	3,13	2,9	4,59	3,9	5,90

Tabelle 5. Aus der Gesamtregressionsgleichung $Y = 1,1201 + 1,2322 x - 3,1853 (0,303)^{x}$ für äquidistante Säurekonzentrationen ($x = -\log c_{A}$) berechnete H_{0} -Werte

Da die in Tab. 2 zusammengestellten Werte $\log(c_B/c_{BH}^{\oplus})$ Durchschnitte aus je zwei unabhängigen Messungen darstellen, kann man noch die Streuung s²₀ und die Standardabweichung s₀ einer Einzelmessung dieses Verhältnisses für jeden Indikator angeben (siehe Kolonne 5 und 6 der Tab. 6). Vergleicht man s²₀ mit der Streuung s² um die Regression (13), so sieht man, dass letztere signifikant grösser ist, da sie neben s²₀/2 auch noch das von Indikator zu Indikator verschiedenartige Verhalten bei gleicher Eigenschaft des Lösungsmittelsystems berücksichtigt (vgl. Tab. 3). Demzufolge sind auch die pK'-Werte der Kolonne 2, Tab. 6 mit grösseren Standardabweichungen behaftet als man in Anbetracht des Versuchsfehlers s₀ zunächst erwarten würde.

	1	2	3	4	5	6
Indikator	pK'-Werte in H ₂ O «Best values» ^{5a})	Werte aus Gesamtregr Gleichung: pK' = - h _r (in MIBK)	pK'-Werte in MIBK nach schritt- weisem Vorgehen	pK'-Diff. zwischen Kolonne 2 und 3	s <mark>2</mark>	s _o
o-Nitranilin	- 0,29	0	0		0,00045	0,021
p-Nitranilin	0,99	1,84 \pm 0,04	1,87	0,03	0,00029	0,017
Phenylazo-						
diphenylamin.	1,42	2,29 <u>+</u> 0,04	2,33	0,04	0,00014	0,012
m-Nitranilin	2,50	3,27 <u>+</u> 0,05	3,38	0,11	0,00051	0,023
p-Aminoazobenzol.	2,76	4,14 \pm 0,06	4,23	0,09	0,00018	0,014

Tabelle 6. Scheinbare pK'-Werte verschiedener Herkunft

HELVETICA CHIMICA ACTA

Abschliessend seien noch die folgenden Bemerkungen angebracht:

1. Der Arbeitsaufwand zur Aufstellung des Gleichungssystems (6), d. h. die Berechnung der Elemente der Matrix (8) und des Kolonnenvektors (9), ist wesentlich geringer als es zunächst den Anschein hat, da der grösste Teil der Elemente einfache Funktionen ganzer Zahlen sind.

Die Lösung des Gleichungssystems bietet bis ca. 7 Indikatoren auch von Hand keine Schwierigkeiten, doch wird man für die Ausgleichung von Daten einer noch höheren Zahl von Indikatoren mit Vorteil einen Rechenautomaten einsetzen. Im Rahmen einer an anderer Stelle zu beschreibenden Arbeit wurde so eine sich auf 16 Indikatoren stützende H₀-Skala für das System Feinsprit/ Salzsäure bestimmt.

2. Die Funktion Z(x) des Ansatzes (3) ist vor der Berechnung der Matrixelemente S_{ij} für jedes Problem neu zu bestimmen, wobei die Form von Z(x) natürlich willkürlich gewählt werden kann, abgesehen von der Bedingung, dass Z(x) für grosse Werte von x gegen Null streben muss. Der Ansatz (12) $Z(x) = m^x$ dürfte sich in vielen Fällen als günstig erweisen.

3. Die in der Einleitung aufgeworfene Frage, ob sich eine H_0 -Funktion im System Methylisobutylketon/Schwefelsäure mit einer anderen, in einem amphiprotischen System höherer Dielektrizitätskonstante gemessenen H_0 -Skala vergleichen lasse, soll in der erwähnten Arbeit über das System Feinsprit/Salzsäure eingehender beantwortet werden. Es ergibt sich, dass innerhalb etwas weiter gesteckter Fehlergrenzen, als sie durch s² der beiden zu vergleichenden Funktionen zu erwarten wären, die beiden Funktionen im hier untersuchten Bereich linear voneinander abhängen.

Experimenteller Teil

Methylisobutylkcton *purum* (FLUKA AG., Buchs) wurde 1 Std. über ca. 20 Gew.-Proz. K_2CO_3 gekocht und anschliessend abdestilliert [Sdp. (720 Torr) 114,3–114,5°]. Die mittlere Fraktion (ca. 80 Gew.-Proz.) wurde 2mal durch eine Kolonne filtriert, die pro Liter Methylisobutylketon mit ca. 200 g «Molecular Sieves» (LINDE Co., DIV. OF UNION CARBIDE) gefüllt war und abschliessend sorgfältig durch eine 1 m lange VIGREUX-Kolonne destilliert. Das Destillationsprodukt wurde spektroskopisch und durch Mikrotitrationen mit HCl und Tetramethylammoniumhydroxyd auf seine Reinheit geprüft und schliesslich auf 0,50 Gew.-Proz. Wassergehalt eingestellt.

Schwefelsäure bewirkt in grosser Konzentration (> 1-m.) schon bei Zimmertemperatur eine fortschreitende dunkelbraune Verfärbung des Methylisobutylketons. Da diese Verfärbung ungefähr linear mit der Zeit zunimmt, und zwar um so schneller, je höher die Temperatur und je grösser die Säurekonzentration ist, konnte durch gute Kühlung, möglichst kleine Säurekonzentration der Säurestammlösungen und periodisch frische Herstellung der Lösungen die Verfärbung so klein gehalten werden, dass sie sich bei den spektroskopischen Messungen nicht störend auswirkte.

Zur Herstellung der Stammlösungen wurde H_2SO_4 konz. z. A. (MERCK, Darmstadt) abgewogen und nach Kühlung mit Aceton-Trockeneismischung in einem Messkolben mit ebenfalls vorgekühltem Methylisobutylketon gemischt. Die Konzentration der Lösungen wurde durch elektrometrische Titration mit 0,1-n. NaOH überprüft, wobei die Abweichungen vom Sollwert maximal $\pm 1\%$ betrugen.

Reinigung und Verhalten der Indikatoren: Die verwendeten fünf Indikatoren wurden alle nach den in der Literatur angegebenen Methoden (vgl. Literaturstellen in Tab. 1) gereinigt und im Hochvakuum getrocknet oder sublimiert. Die Smp. sind in Kolonne 1 von Tab. 7 zusammengestellt. In Kolonne 2 sind die Konzentrationsbereiche aufgeführt, innerhalb deren die Gültigkeit des BEER'schen Gesetzes geprüft wurde. Die weiteren Kolonnen enthalten eine Zusammenstellung der spektroskopischen Daten, die anhand von Lösungen in Methylisobutylketon gemessen wurden. Die Indikatorlösungen wurden jeweils kurz vor den Spektrenaufnahmen hergestellt. Dabei muss die neutrale Lösung von p-Aminoazobenzol gut vor Licht geschützt werden, da die normalerweise vorliegende trans-Form dieser Substanz am Tageslicht zum Teil leicht in die cis-Form übergeht¹⁶).

¹⁸) a) A. H. COOK, J. chem. Soc. **1938**, 876; b) E. FISCHER, J. chem. Phys. **23**, 1367 (1955); c) M. FRANKEL, R. WOLOVSKY & E. FISCHER, J. chem. Soc. **1955**, 3441; d) W. R. BRODE, J. H. GOULD & G. M. WYMAN, J. Amer. chem. Soc. **74**, 4641 (1952).

	1	2	3	4	5	6	7
Indikator	Smp. korr.	Konzentrations- bereich für BEER'- sches Gesetz	Konz. für Spektren	ε _B ohne Säure	€BH⊕	$\lambda_{\rm B} \ { m m}\mu$	λ _{BH} ⊕ mμ
o-Nitranilin	71,5°	$1,8 \cdot 10^{-3} - 3,6 \cdot 10^{-6} - m.$	1,8 · 10-4-m.	5300	_	403	_
p-Nitranilin	147,0°	$6,0 \cdot 10^{-4} - 1,2 \cdot 10^{-6} - m.$	6,0 · 10 ^{−5} -m.	15800		367	
Phenylazo- diphenylamin m-Nitranilin .	85,0° 112,0°	$3,0 \cdot 10^{-4} - 6,0 \cdot 10^{-6}$ -m. $6,0 \cdot 10^{-3} - 1,2 \cdot 10^{-5}$ -m.	3,0 · 10 ⁻⁵ -m. 6,0 · 10 ⁻⁵ -m.	28600 1500	-	412 380	547 -
p-Aminoazo- benzol	126,0°	3,5 · 10 ^{−4} − 7,0 · 10 ^{−7} -m.	3,5 · 10 ^{−5} -m.	26000	14900	390	508

Tabelle 7. Angaben betr. die Indikatoren

Messmethodik. Die Spektren wurden mit einem registrierenden BECKMAN-Spektrophotometer (Modell DK 1) in 1,00-cm-Quarzküvetten bei 21° \pm 1° aufgenommen. Die Messlösungen wurden durch Verdünnen von 1 ml Indikatorstammlösung mit der gewünschten Menge Säurestammlösung und reinem Keton in einem 10-ml-Messkolben bereitet, energisch geschüttelt und sofort spektroskopiert.

Der CIBA AKTIENGESELLSCHAFT in Basel danken wir für die Unterstützung der vorliegenden Arbeit.

SUMMARY

From the spectroscopically determined concentration ratios of the basic and acid forms of five indicator bases in methylisopropyl ketone (0.5% water) containing from $5 \cdot 10^{-4}$ to $6 \cdot 10^{-1}$ M sulfuric acid, an H₀ acidity function has been calculated for this system by a multiple regression technique.

Organisch-chemisches Laboratorium der Eidg. Technischen Hochschule, Zürich